Define a class for rational numbers. A rational number is a number that can be represented as the quotient of two integers. For example, 1/2, 3/4, 64/2, and so forth are all rational numbers. (By ½, etc we mean the everyday meaning of the fraction, not the integer division this expression would produce in a C++ program).
Represent rational numbers as two values of type int, one for the numerator and one for the denominator. Call the class rationalNum
Include a constructor with two arguments that can be used to set the member variables of an object to any legitimate value. Also include a constructor that has only a single parameter of type int; call this single parameter whole_number and define the constructor so that the object will be initialized to the rational number whole_number/1. Also include a default constructor that initializes an object to 0 (that is, to 0/1).
Overload the input and output operators >> and <<. Numbers are to be input and output in the form 1/2, 15/32, 300/401, and so forth. Note that the numerator, the denominator, or both may contain a minus sign, so -1/2, 15/32, -300/-400 are all possible input. The input operator, >>, reads the string 15/32 as
Overload all of the following operators so that they correctly apply to the type rationalNum: ==, <, >, +, -, *, and /.
Write a test program to test your class.
[Hints: Two rational numbers a/b and c/d are equal if a*d equals c*b. If b and d are positive numbers, a/b is less than c/d provided a*d is less than c*b.
Numerator =a*d + c*b
Denominator = b*d
Numerator = a*d – c*b
Denominator = b*d
Numerator = a*c
Denominator = b*d
Numerator = a*d
Denominator = b*c
]
The numerators and denominators of rational numbers tend to become large, so it is better to normalize intermediate results. This is achieved by calling a method, normalize(), on the number as shown:
cout << “The sum of the two numbers is: “ << result.normalize() << endl;
Here’s the function that you call to normalize the number. Make it a member function of the rationalNum class. It is called in the driver program to:
rationalNumber rationalNumber::normalize()
{
rationalNum temp;
int x,y,z;
x=numerator;
y=denominator;
z=(x*x < y*y)? (z=x):(z=y);
for (int i=2; i*i<=z*z; i++){
while ((x%i)==0 && (y%i)==0 )
{
x=x/i;
y=y/i;
z=z/i;
}
}
if (y<0){
temp.numerator=-x;
temp.denominator=-y;
}
else {
temp.numerator=x;
temp.denominator=y;
}
return temp;
}
Here’s the output of test run of the driver program using rationalNum objects.
E:neu>rationalMain
Enter the first value: 2/3
Enter the second value: 3/5
value1 is 2/3
Normalized value1: 2/3
value 2 is: 3/5
Normalized value2: 3/5
addition 19/15
Normalized sum: 19/15
subtraction 1/15
Normalized difference: 1/15
multiplication 6/15
Normalized product: 2/5
division 10/9
Normalized quotient: 10/9
is 2/3 < 3/5 ? no
is 2/3 > 3/5 ? yes
is 2/3 = 3/5 ? no
Press any key to continue . . .
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more