Math 141 calculus ii section 4065

Math 141 Calculus II

Section 4065


  Fall 2024

1. (10 points) The equation of the red curve is y2 = x3. Find the volume generated when area bounded by (0,0), (4,8), (4,0) is revolved about the x-axis. (similar to 5.1 #7-12)

Chart, line chart  Description automatically generated

1. (10 points) Using the same figure in problem #1, find the volume generated when the area bounded by (0,0), (4,8), (4,0) is revolved about the y-axis.

1. (10 points) (similar to 5.1 #14-22).

2. Compute the volume of the inverted cone using an integral. Note: Use the vertex of the cone as the origin point (0,0).

A picture containing diagram  Description automatically generated

2. Does your answer match with the known volume of a right cone, namely Vol = (yes or no)

1. (10 points) Calculate the length of the curve y = (similar to 5.2 #1-29)

3. Plot the curve for 0 <= x <= .

3. Plot the line segment between (0,0) and (,1) on the same graph.

3. Using the Pythagorean theorem, what is the length of the line segment?

3. Compute the length of the curve by setting up the arc length integral and then getting a numerical answer using Desmos.

3. Is your numerical answer from (d) greater than your numerical answer from (c)? (yes or no)

1. (10 points) Parabolic mirrors and reflectors have the shape of a paraboloid of revolution. Similar to 5.2 #36-45.

Find the area of the surface when the graph of y = for 0 <= x <= 2 is rotated about the y-axis.

4. Plot the graph using Desmos.

4. Compute the surface area analytically when rotated about the y-axis.

4. Check your answer with an integration program. Take and post a screenshot of your answer.

4. Does your analytic answer from (b) match your computer answer from (c)? (yes or no)

1. (10 points) (similar to 5.2 #15-25) A curve is defined parametrically by

x(t) = 2cos(t)

y(t) = sin(t)

5. Plot the curve between t = 0 and t = pi using Desmos.

Enter ( 2cos(t), sin(t) )

5. Set up the integral to compute the arc length of the curve.

5. Use the Desmos integration program to get a numerical value for the perimeter. Include a screenshot.

1. (10 points) (similar to 5.3 #1-13, Week 2 Summary #6) A tank in the shape of a paraboloid of revolution is completely filled with water. The tank is 8 ft high. We want to compute the amount of work needed to pump the water to a point 4 feet above the top of the tank.

Start with the work water pumping equation shown below. Note: The origin (0,0,0) of the coordinate system is at the base of the trough.

Work =

Also note: z is the vertical direction in this problem, not y.

What are the following quantities?

a. =

b. =

c. b =

d. A(x,y) dz

What is A(x,y)?

e.

f. Using the above values, analytically compute the work from the integral.

g. Check your answer with a Simpson’s rule program.

h. Do your answers from (f) and (g) match? (yes or no)

1. (10 points) Find the centroid of the figure bounded by f(x) = (-x2 -2x -1) and

g(x) = (x – 5) (similar to 5.4 #11-22)

7. Make a graph of the curves.

7. Compute M using an integral (not using Desmos or any integration program)

7. Compute My (use Desmos)

7. Compute xc (the x centroid)

7. Compute Mx (use Desmos)

7. Compute yc (the y centroid)

7. Draw your centroid on a plot with the figure. Attach a screenshot.

7. Does your centroid look like the center of gravity of the figure? (yes or no)

1. (10 points) A waterproof rectangular box has sides L = 60 in = 5 ft, and a height H = 6 in = 0.5 ft, and a width W = 6 in = 0.5 ft It is filled with water (g = 62.5 lbs/ft3).

8. Before you do any problem involving work, you have to define a reference point or origin. In principle, the choice of an origin is arbitrary. But some choices make the problem easier than others. Choose and clearly state your origin point for this problem.

8. What is the volume of the box?

8. If the box is filled with water, what is weight of the water?

8. What are the coordinates of the centroid of the hexagonal block relative to your origin choice?

8. How much work is done pumping the water to a point 3 feet higher than the top of the box? (similar to 5.4 #31-34) Use the method of centroids.

1. (10 points) A hemi-sphere of radius 4 feet is filled with water . How much work is done pumping the liquid to a point 2 ft above the top of the sphere?

Hint: Put the origin of your x-y coordinates at the center of the circle. The centroid of a hemisphere is

Diagram, venn diagram  Description automatically generated

image5.png

image6.png

image1.png

image2.png

image3.png

image4.png

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more