Powerpoint (418) | Mathematics homework help

 

Multimedia Presentation
In this assignment, you will create a correctable code for a list of key words. Your task is to create an efficient, correctable code for a list that contains at least 6 key words. The words in your code will be represented as binary strings using only 0’s and 1’s. Stringent correctability requirements mean your code must have a minimum distance of 3.

– First, watch the following two videos, then read the following information to understand the definitions for bit, binary word, code, codewords, Hamming distance, and minimum distance of a code:

Video 1: Parity Checksums

Video 2: Hamming distance

Consider a sequence of 0’s and 1’s of length n.  This can be represented by an n-tuple of 0’s and 1’s such as (1,0,1,1) if n=4.  If V={0,1}, then we can form the product of V with itself n times and denote it by Vn.  So Vn={(a1, a2, …, an)|ai∈{0,1}}. Vn consists of all possible binary words of length n.  We can define a metric on Vn called the Hamming distance dH as follows:

For binary words x and y of length n, dH(x, y) is the number of places in which x and y differ.

Given this metric, Vn is now a metric space, and the topology induced by this metric is the discrete topology on Vn since the topology induced by a metric on a finite set is the discrete topology, and Vn is finite. 

To send a message using binary words, not all of Vn will be used; rather, only a subset of Vn will be used.  A subset C of Vn is called a code of length n, and the binary words in C are called codewords.  The smallest Hamming distance between any two codewords in C is called the minimum distance of the code C.

It turns out that, if a code C of length n is designed so that the minimum distance of C is d, then any binary word that had up to d-1 errors can be detected.  Furthermore, any binary word that had floor((d−1)/2) or fewer errors can be corrected. [Here, floor is the floor function; for example, floor(3.6)=3 and floor(8)=8.]

Now, you’re ready to create your correctable code.
– Create a code consisting of binary codewords.
– The code must meet three requirements
  — Contain at least 6 codewords
  — Have a minimum distance of 3 (explain why a min distance of 4 is no better than 3)
  — Maintain efficiency by using the fewest number of bits per codeword as possible
– Clearly document and describe your code: what it is, why you chose it, etc.
– Discuss how topology relates to the selection of your code and the Hamming metric

A few notes about format: use MS PowerPoint for your presentation; develop a presentation that is 10-15 slides in length; incorporate audio files into your presentation in order to explain your work; use Equation Editor for all mathematical symbols, e.g. xX or Cl(A)Cl(X-A); and select fonts, backgrounds, etc. to make your presentation look professional.

Course and Learning Objectives
This Writing Assignment supports the following Course and Learning objectives:
CO-4 Determine if a topological space is a metric space and generate a topology from a metric.
LO-13: Understand the definitions of a metric and metric space.
LO-14: Develop a topology from a metric.

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more