Data mining assignment | data minimg | Accrediting Council for Continuing Education and Training

This case is about a bank (Thera Bank) which has a growing customer base. Majority of these customers are liability customers (depositors) with varying size of deposits. The number of customers who are also borrowers (asset customers) is quite small, and the bank is interested in expanding this base rapidly to bring in more loan business and in the process, earn more through the interest on loans. In particular, the management wants to explore ways of converting its liability customers to personal loan customers (while retaining them as depositors). A campaign that the bank ran last year for liability customers showed a healthy conversion rate of over 9% success. This has encouraged the retail marketing department to devise campaigns with better target marketing to increase the success ratio with a minimal budget. The department wants to build a model that will help them identify the potential customers who have a higher probability of purchasing the loan. This will increase the success ratio while at the same time reduce the cost of the campaign. The dataset has data on 5000 customers. The data include customer demographic information (age, income, etc.), the customer’s relationship with the bank (mortgage, securities account, etc.), and the customer response to the last personal loan campaign (Personal Loan). Among these 5000 customers, only 480 (= 9.6%) accepted the personal loan that was offered to them in the earlier campaign.

Link to the case file: 

Thera Bank_Personal_Loan_Modelling-dataset-1.xlsx (Xls file attached for data)

You are brought in as a consultant and your job is to build the best model which can classify the right customers who have a higher probability of purchasing the loan. You are expected to do the following:

  • EDA of the data available. Showcase the results using appropriate graphs – (10 Marks)
  • Apply appropriate clustering on the data and interpret the output – (10 Marks)
  • Build appropriate models on both the test and train data (CART & Random Forest). Interpret all the model outputs and do the necessary modifications wherever eligible (such as pruning) – (20 Marks)
  • Check the performance of all the models that you have built (test and train). Use all the model performance measures you have learned so far. Share your remarks on which model performs the best. – (20 Marks)

Hint : split <- sample.split(Thera_Bank$Personal Loan, SplitRatio = 0.7)
#we are splitting the data such that we have 70% of the data is Train Data and 30% of the data is my Test Data
 

train<- subset(Thera_Bank, split == TRUE)
test<- subset( Thera_Bank, split == FALSE)

Please note the following:

  • Your submission should be a Word Document with a word limit of 3000 words. Appendices are not counted in the word limit.
  • Also, share the R code & Interpretation.
  • You must give the sources of data presented. Do not refer to blogs; Wikipedia etc.
  • Any assignment found copied/ plagiarized with candidate(s) will not be graded and marked as zero.
  • Please ensure timely submission as post deadline assignment will not be accepted.
Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more