1. Rectilinear motion The evil Professor Mayhem is planning to drop a time-bomb from the top of a 180 m tall building. If the bomb hits the ground it will explode and destroy all of the new Adelaide University City. Even if it doesn’t hit the ground, the bomb is set to explode 24 s after its release. The superhero Mercurious is 864 m from the base of the building, at (x, y) = (0, 0), when he sees Professor Mayhem release the bomb. In an instant Mercurious works out that, assuming that t = 0 is when the bomb is released, he needs to run with super speed along a path described by the mathematical equation,
x(t) = t ^3 − 36t^ 2 + Ct + D, in order to catch the bomb before it hits the ground, turn around and deposit it a safe distance from the city, and then turn around again and return before the bomb explodes. (a) Draw an appropriate sketch of the situation with Mercurious’s position (along the horizonal) at any time t identied by the function x(t), assuming all the action takes place to the left of the building (i.e., x < 0), and the bomb’s vertical position at any time t during its fall is described by the function y(t) ≥ 0. (b) Determine the time it would take for the bomb to hit the ground if it falls under gravity with an acceleration of 10 ms^−2 . (c) Determine the parameters C and D if Mercurious runs and catches the bomb at the base of the building at the exact moment it would have hit the ground (at which point he also reverses direction for the rst time). (d) Determine where Mercurious leaves the bomb (at which point he simultaneously reverses direction a second time). (e) Determine Mercurious’s position when the bomb nally explodes. (f) Determine Mercurious’s maximum speed over the 24 s period. At what position(s) is he when this occurs?
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more